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Version 1.0

We have seen in the previous lecture that if we input a signal x(t) of spectrum X (ω) into an LTI system of frequency response

H(ω), then the spectrum of the corresponding output is given by the simple identity Y (ω) = H(ω)X (ω). Therefore, we can

use this frequency point of view to design the frequency response according to what we want to keep, discard or modify in

the input spectrum. We apply this idea to ideal filters and amplitude modulation.

1 Ideal filters

Ideal filters are simply systems that do not change the input spectrum, i.e. H(ω) = 1, in some ranges of frequencies, and

discard all the others, i.e. H(ω) = 0.

Definition 1.1 (Ideal lowpass filter)

An ideal lowpass filter with cutoff frequency fco > 0, i.e. with cutoff impulse ωco = 2πfco > 0, is the LTI system

whose frequency response is H(ω) = R−ωco ,ωco (ω) = χ[−ωco ,ωco ](ω).
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Proposition 1.1

The impulse response of an ideal lowpass filter with cutoff impulse ωco is

∀t ∈ R h(t) =
ωco

π
sinc(ωcot)

PROOF : Since the impulse response is the inverse Fourier transform of the frequency response, we have for any t ∈ R,

h(t) =
1

2π

∫ +∞

−∞
H(ω)e iωtdω =

1

2π

∫ ωco

−ωco

e iωtdω =
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2π
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−ωco

=
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e iωco t − e−iωco t

it

=
sin(ωcot)

πt
=
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π
sinc(ωcot)
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1 IDEAL FILTERS

Remark: This lowpass filter is ideal because it perfectly preserves frequencies smaller that the cutoff frequency, while it

discards the larger ones. However, this proposition shows that h(t) 6= 0 for t < 0, making this filter non-causal, thus not

implementable in practice.

The RC circuit that we have studied in the previous lectures acts as a non-ideal lowpass filter. Indeed, we recall that its

frequency response is H(ω) =
1

1 + iωτ
. Therefore, lim

ω→0
|H(ω)| = 1 and lim

|ω|→+∞
|H(ω)| = 0, which is the behavior

expected for a lowpass filter.

We will see in future lectures other implementable causal lowpass filters.

Definition 1.2 (Ideal bandpass filter)

An ideal bandpass filter with minimal cutoff impulse ωmin ≥ 0 and maximal cutoff impulse ωmax > ωmin is the LTI

system whose frequency response is

H(ω) = R−ωmax,−ωmin(ω) + Rωmin,ωmax(ω) = χ[−ωmax,−ωmin]∪[ωmin,ωmax](ω)

X (ω)
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Proposition 1.2

The impulse response of the ideal bandpass filter with minimal cutoff impulse ωmin and maximal cutoff impulse ωmax is

∀t ∈ R h(t) =
ωmax

π
sinc(ωmaxt)−

ωmin

π
sinc(ωmint)

PROOF : The frequency response of this ideal bandpass filter can also be written:

H(ω) = R−ωmax,ωmax(ω)− R−ωmin,ωmin(ω)

By linearity of the inverse Fourier transform, for any t ∈ R,

h(t) = F−1(R−ωmax,ωmax)(t)−F−1(R−ωmin,ωmin)(t) =
ωmax

π
sinc(ωmaxt)−

ωmin

π
sinc(ωmint)

Remarks:

I As for the ideal lowpass filter, h(t) 6= 0 for some t < 0, making the ideal bandpass filter non-causal and non-

implementable.

I An ideal lowpass filter with cutoff frequency ωco is a particular ideal bandpass filter with ωmin = 0 and ωmax = ωco .
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2 AMPLITUDE MODULATION

Definition 1.3 (Ideal highpass filter)

An ideal highpass filter with cutoff impulse ωco = 2πfco > 0, is the LTI system whose frequency response is

H(ω) = 1− R−ωco ,ωco (ω) = 1− χ[−ωco ,ωco ](ω).

X (ω)

−ωco ωco

1

ω

Proposition 1.3

The impulse response of the ideal highpass filter with cutoff impulse ωco is

∀t ∈ R h(t) = δ(t)− ωco

π
sinc(ωcot)

PROOF : By linearity of the inverse Fourier transform,

∀t ∈ R h(t) = F−1(ω 7→ 1)(t)−F−1(R−ωco ,ωco )(t) = δ(t)− ωco

π
sinc(ωcot)

Remarks:

I As the ideal lowpass and bandpass filters, the ideal highpass filter is non-causal, thus non-implementable.

I An ideal highpass filter with cutoff frequency ωco is a particular ideal bandpass filter with ωmin = ωco and ωmax = +∞.

2 Amplitude modulation

Imagine that we record a speech or sound signal which is audible by the human ear. Its frequency range is typically between

16 Hz to 16 kHz. We want to transmit this signal with over radio waves whose frenquecy range is 30 MHz to 300 MHz. We

need to shift the signal spectrum to transmit it. This can be done with amplitude modulation.

In the following, we denote x ∈ F(R,R) the signal to transmit, and X = F(x) its Fourier transform. We assume that this

spectrum is bounded, i.e. there exists ωmax > 0 such that X is zero outside the interval [−ωmax,ωmax]. With modulation, we

shift this spectrum centered around 0 Hz to obtain a spectrum centered around a transmission frequency, called the carrier

frequency and denoted fc , corresponding to a carrier impulse ωc = 2πfc .
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2 AMPLITUDE MODULATION

0

X (ω)

ω

−ωmax ωmax 0

τωc (X )(ω)

ω

ωc − ωmax ωc ωc + ωmax

Baseband spectrum Shifted spectrum

To perform this shift, we have to convolve spectrum X by the shifted Dirac delta function δωc , to obtain the spectrum

Y = δωc ∗ X = τωc (X ). We have seen in the previous lecture that shifting in the frequency domain by ωc corresponds to

the multiplication by e iωc t in the time domain so that the modulated signal is y(t) = e iωc tx(t).

However, multiplying by a complex exponential implies that y is a complex-valued signal. To have a real-valued modulated

signal, we rather multiply signal x by the cosine cos(ωct) = Re(e iωc t), so that y(t) = x(t) cos(ωct).

y(t)

t

In the frequency domain, this gives:

Y (ω) = F(xcωc )(ω) =
1

2π
[X ∗ F(cωc )] (ω) =

1

2π
[X ∗ (πδωc + πδ−ωc )] (ω) =

1

2
X (ω − ωc) +

1

2
X (ω + ωc)

0

Y (ω)

ω

−ωc −ωmax ωmax ωc

We transmit signal y through radio waves and we assume that we receive it uncorrupted by noise. As this signal was obtained

by multiplying x by cosine cωc , the intuition tells us to divide y by the same cosine to recover x . However, this is a bad idea

since cosine can be zero or close to zero, yielding computation errors. Modulating x by a cosine splits its spectrum into two

identical parts by shifting one half around −ωc and the other half around ωc . Multiplying signal y by cωc , we find copies of X
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2 AMPLITUDE MODULATION

centered around −2ωc , 0 et 2ωc . Indeed, setting z(t) = y(t) cos(ωct), we have:

Z (ω) =
1

2
Y (ω − ωc) +

1

2
Y (ω + ωc) =

1

4
X (ω − 2ωc) +

1

2
X (ω) +

1

4
X (ω + 2ωc)

0

Z (ω)

ω

−2ωc −ωc −ωco ωco ωc 2ωc

Finally, to recover signal x , we have to eliminate the spectra centered around−2ωc et 2ωc and multiply by 2 the one centered

around 0. Thus we apply an ideal lowpass filter whose cutoff frequency ωco is between ωmax and 2ωc −ωmax, followed by an

amplifier of factor 2. Finally, we can represent the amplitude modulator and demodulator:

×

cos(ωct)

x(t) y(t)

×

cos(ωct)

Lowpass filter ×2 amplifier
y(t) z(t) x(t)
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